
Python Exercices

– La deuxième séance

A.Belcaid [24/09/2024]

Exercise: banish Function in Python

Write a function named banish that accepts two lists of integers (a1 and a2)

as parameters and removes all occurrences of the values in a2 from a1. An

element is "removed" by shifting all subsequent elements one index to the

left to cover it up, placing a 0 into the last index. The original relative

ordering of a1's elements should be retained.

Example:

a1 = [42, 3, 9, 42, 42, 0, 42, 9, 42, 42, 17, 8, 2222, 4, 9, 0, 1]

a2 = [42, 2222, 9]

banish(a1, a2)

After calling the function, the contents of a1 should become:

[3, 0, 17, 8, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Explanation:

1. Function Definition: Start by defining the banish function that takes two

lists as input.

2. Checking Values: Iterate through each element in a1, and if an element

is found in a2, it should be removed.

3. Shifting Elements: When an element is removed, shift all subsequent

elements to the left.

4. Adding Zeros: Insert zeros at the end to compensate for the removed

elements.

Lessons Learned: Understanding how to use loops to manipulate data.

The importance of maintaining the order of elements while modifying lists.

How to handle empty data and avoid modifying lists when conditions are not

met.

Source Code:



Exercise: collapse_pairs Function in Python

Write a function named collapse_pairs that accepts a list of integers as a

parameter and modifies the list so that each pair of neighbouring integers (such

as the pair at indexes 0-1, and the pair at indexes 2-3, etc.) are combined into a

single sum of that pair. The sum is stored at the even index if the sum is even

and at the odd index if the sum is odd. The other index of the pair is set to 0.

Example:

Suppose the following list is declared and the following call is made:

a = [7, 2, 8, 9, 4, 22, 7, 1, 9, 10]

collapse_pairs(a)

After calling the function, the contents of a should become: [0, 9, 0, 17, 26, 0,

8, 0, 0, 19] Explanation:



1. Function Definition: Start by defining the collapse_pairs function that takes

a single list of integers as input.

2. Processing Pairs of Elements: The function should iterate through the list,

two elements at a time, processing each pair (like index 0-1, 2-3, etc.).

3. Storing the Sum: For each pair of integers, sum the two values.

If the sum is even, store it at the even index (0, 2, 4, ...).

If the sum is odd, store it at the odd index (1, 3, 5, ...).

4. Set the Other Index to Zero: Once the sum is stored, set the other index (the

one not storing the sum) to 0.

5. Handling Odd Length Lists: If the list has an odd number of elements, leave

the last element as it is.

Source Code:

Exercise: find_median Function in Python



Write a function named find_median that accepts a list of integers and returns

the median of the numbers in the list. The median is the number that appears

in the middle when the elements are arranged in order. Assume that the list is

of odd size, and the numbers range between 0 and 99 inclusive.

Example:

Example 1

numbers = [5, 2, 4, 17, 55, 4, 3, 26, 18, 2, 17]

find_median(numbers) # Output: 5

Example 2

numbers = [42, 37, 1, 97, 1, 2, 7, 42, 3, 25, 89, 15, 10, 29, 27]

find_median(numbers) # Output: 25

Explanation:

1. Function Definition: Begin by defining the find_median function that takes a

list of integers as input.

2. Sorting the List: The median requires sorting the list of numbers in

non-decreasing order. Once the list is sorted, the middle element is the median.

3. Identifying the Median: Since the list size is always odd, the median is the

element located at the index len(list) // 2 after sorting.

4. Returning the Result: The function should return the number at the middle

index.

Source Code:



Exercise: flip_half Function in Python

Write a function named flip_half that reverses the order of the elements in

odd-numbered positions of a list of integers. The function should only modify

the odd-numbered elements (positions 1, 3, 5, etc.), leaving the elements in

even-numbered positions unchanged.

Example:

Original list:

index: 0 1 2 3 4 5 6 7

[1, 8, 7, 2, 9, 18, 12, 0]

Modified list after calling flip_half:

index: 0 1 2 3 4 5 6 7

[1, 0, 7, 18, 9, 2, 12, 8]

Notice that the numbers in odd positions (1, 3, 5, 7) have been reversed, but

the numbers in even positions (0, 2, 4, 6) remain the same.

Explanation:



1. Function Definition: Start by defining the flip_half function that takes a list

as input.

2. Identifying Odd Positions: The odd-numbered positions in the list are

indexed as 1, 3, 5, 7, etc. You need to extract the elements at these positions.

3. Reversing the Odd-Positioned Elements: Reverse the order of the elements

at odd positions.

4. Inserting the Reversed Elements: Replace the original odd-positioned

elements with the reversed ones.

Source Code:

Conclusion:

Through these four exercises, we explored key Python programming concepts

such as list manipulation, filtering, reversing sequences, and modifying list

elements based on specific conditions. These tasks helped reinforce our

understanding of loops, list slicing, and efficient data handling, which are

essential skills in writing effective and optimised code.


